On the nature of the dirty ice at the bottom of the GISP2 ice core
M. L. Bender, E. Burgess, R. B. Alley, B. Barnett, and G. D. Clow
Earth and Planetary Science Letters (1 November 2010)
DOI: 10.1016/j.epsl.2010.09.033
We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040 m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053 m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100–250 ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.
keywords: Greenland Ice Sheet; Eemian; glaciology; geochemistry