Landscape control of nitrous oxide emissions during the transition from conservation reserve program to perennial grasses for bioenergy

D. Saha, B. M. Rau, J. P. Kaye, F. Montes, P. R. Adler, and A. R. Kemanian

GCB Bioenergy (1 September 2016)

DOI: 10.1111/gcbb.12395

Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during the transition period when the soil is disturbed, plants are establishing, and nitrate and water accumulation may favor emissions. We measured N2O emissions and associated environmental drivers during the transition of perennial grassland in a Conservation Reserve Program (CRP) to switchgrass (Panicum virgatum L.) and Miscanthus x giganteus in the bottom 3-ha of a watershed in the Ridge and Valley ecoregion of the northeastern United States. Replicated treatments of CRP (unconverted), unfertilized switchgrass (switchgrass), nitrogen (N) fertilized switchgrass (switchgrass-N), and Miscanthus were randomized in four blocks. Each plot was divided into shoulder, backslope, and footslope positions based on the slope and moisture gradient. Soil N2O flux, soil moisture, and soil mineral nitrogen availability were monitored during the growing season of 2013, the year after the land conversion. Growing season N2O flux showed a significant vegetation-by-landscape position interaction (P < 0.009). Switchgrass-N and Miscanthus treatments had 3 and 6-times higher cumulative flux respectively than the CRP in the footslope, but at other landscape positions fluxes were similar among land uses. A peak N2O emission event, contributing 26

keywords: conservation reserve program; energy crops; land use change; landscape position; Miscanthus; switchgrass

cite: BibTeX | EndNote | RIS